Microstepping Driver KL4020

Applications

Suitable for a wide range of stepping motors of Nema 17 and 23, and usable for various kinds of machines, such as X-Y tables, labeling machines, laser cutters, engraving machines, and pick-place devices. Particularly useful in applications with low vibration, high speed and high precision are desired

Electric Specifications (T_j=25 °C)

	KL4020			
Parameters	Min	Typical	Max	Unit
output current	0. 25	8.78	2.0	A
Supply voltage	14	32	40	VDC
logic signal current	10	12	18	mA
Pulse input	0	0 - 0	200	KHz
frequencyIso	500			МΩ

Mechanical Specifications (Unit: mm, 1 inch=25.4 mm)

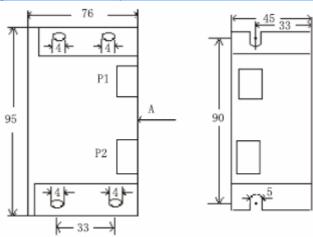


Figure 1: Mechanical Specifications

Pin Assignment and Description

Control Signal Connector P1 pins

Pin Function	Details
PUL+(+5V)	Pulse signal: In single pulse (pulse/direction) mode, this input represents pulse signal, effective for each rising or falling edge (set by inside R13&R14); 4-5V when PUL-HIGH, 0-0.5V when PUL-LOW. In double pulse mode
PUL-(PUL)	(pulse/pulse), this input represents clockwise (CW) pulse, effective for high level or low level (set by inside R13&R14). For reliable response, pulse width should be longer than 1.2μs. Series connect resistors for current-limiting when +12V or +24V used.
DIR+(+5V)	<u>DIR signal</u> : In single-pulse mode, this signal has low/high voltage levels, representing two directions of motor rotation; in double-pulse mode (set by inside R31&R32), this signal is counter-clock (CCW) pulse, effective for high level or low level (set by inside R13&R14). For reliable motion response, DIR
DIR-(DIR)	signal should be ahead of PUL signal by 5μs at least. 4-5V when DIR-HIGH, 0-0.5V when DIR-LOW. Please note that motion direction is also related to motor-driver wiring match. Exchanging the connection of two wires for a coil to the driver will reverse motion direction.
ENA+(+5V)	Enable signal: This signal is used for enabling/disabling the driver. High level (NPN control signal, PNP and Differential control signals are on the contrary.
ENA-(ENA)	namely Low level for enabling.) for enabling the driver and low level for disabling the driver. Usually left UNCONNECTED (ENABLED).

Power connector P2 pins

Pin Function	Details		
GND	DC power ground.		
+V	DC power supply, 20~40VDC, Including voltage fluctuation and EMF voltage.		
A+, A-	Motor Phase A		
B+, B-	Motor Phase B		

Microstep Resolution Selection

Microstep resolution is specified by1, 2, 3 DIP switches as shown in the following table:

Microstep	Steps/rev.(for 1.8 motor)	SW5	SW6	SW7	SW8
2	400	0FF	ON	ON	ON
4	800	ON	0FF	ON	ON
8	1600	0FF	0FF	ON	ON
16	3200	ON	ON	OFF	ON
32	6400	0FF	ON	0FF	ON
64	12800	ON	0FF	0FF	ON
128	25600	OFF	0FF	OFF	ON
5	1000	ON	ON	ON	0FF
10	2000	OFF	ON	ON	OFF
20	4000	ON	OFF	ON	OFF
25	5000	OFF	OFF	ON	OFF
40	8000	ON	ON	OFF	OFF
50	10000	OFF	ON	OFF	OFF
100	20000	ON	0FF	0FF	OFF
125	25000	0FF	OFF	0FF	OFF

Current Setting

Current	SW1	SW2	SW3
0. 25A	ON	ON	ON
0. 5A	OFF	ON	ON
0.75A	ON	OFF	ON
1. 0A	OFF	OFF	ON
1. 25A	ON	ON	OFF
1. 5A	OFF	ON	OFF
1. 75A	ON	OFF	OFF
2A	0FF	OFF	OFF

Notes: Due to motor inductance, the actual current in the coil may be smaller than the dynamic current settings, particularly under high speed condition.

Typical Connections

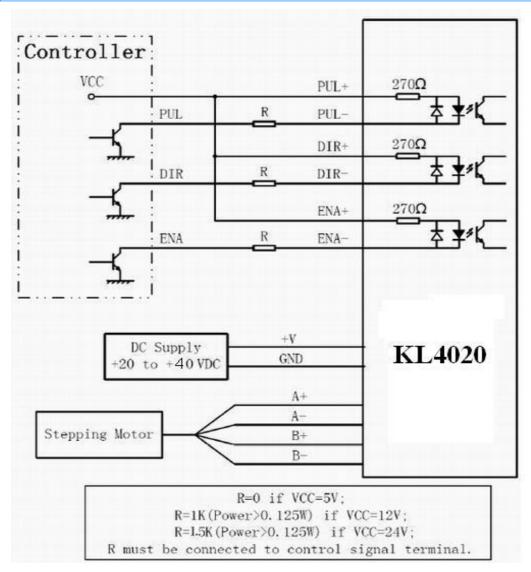


Figure 2: Typical Connections